OSTEOSET® 2 DBM
Bone Graft Substitute with Bioassayed Demineralized Bone Graft (DBM)

TECHNICAL MONOGRAPH

Create Motion® WRIGHT.

Performance Characteristics of OSTEOSET® 2 DBM Graft
Contains: BMP-2, BMP-4, IGF-1, TGF-β1
OSTEOSET®2 DBM
bone graft substitute with
DEMINERALIZED BONE MATRIX
PERFORMANCE CHARACTERISTICS
technical monograph
FIGURE 6 | Provides a representative section of new bone formation surrounding a demineralized bone matrix particle within an OSTEOSET® 2 DBM pellet section. Residual OSTEOSET® 2 DBM material was incorporated by new bone formation with no evidence of foreign body reaction, granulomas, abnormal giant cells, or inflammatory cells.

PRODUCT PARAMETERS
OSTEOSET® 2 DBM pellets are available in two sizes. | FIGURE 7 The smaller pellet is ideal for use in smaller bone defects. Each 4.8 mm and 3.0 mm pellet weighs approximately 80 mg and 25 mg, respectively. Pellets are packaged in several sizes for convenience. All pellets are packaged in vials or disposable injectors and electron beam sterilized.

PLEASE REFER TO THE OSTEOSET® 2 DBM PELLET PACKAGE INSERT FOR ADDITIONAL INFORMATION RELATED TO WARNINGS, PRECAUTIONS, CONTRAINDICATIONS, AND ADVERSE REACTIONS.
OSTEOSET® 2 DBM represents the next generation of product from Wright combining the clinical successes of both demineralized bone matrix and proprietary OSTEOSET® 2 surgical grade calcium sulfate. A cross-sectional view of an OSTEOSET® 2 DBM pellet shows demineralized bone matrix particles homogenously dispersed throughout surgical-grade calcium sulfate. [FIGURE 1] This combination product is a resorbable bone graft substitute which acts as a scaffold for new bone formation. Demineralized bone matrix has been reported to provide osteoinductive bone morphogenetic proteins (BMPs) that signal precursor cells and stimulate the formation of bone at a defect site.

Demineralized bone matrix has been used in conjunction with surgical grade calcium sulfate for many years. In 1992, Sottosanti used a composite of demineralized bone matrix and calcium sulfate for regeneration of bone in extraction and periodontal defects. The calcium sulfate enhanced the inductive effect of demineralized bone matrix and provided a barrier to prevent connective tissue and epithelial invasion within the graft. Sottosanti described numerous case studies in which 90% of his cases provided at least 80% bone filling confirmed by radiographs and re-entry techniques.

The functions of calcium sulfate as part of a bone graft composite have been summarized by Sottosanti, “The first is that it acts as a binder to improve the handling properties of the demineralized bone matrix powder, and limit particle loss. The second is that it improves the yield of new bone by enhancing the inductive effect of the available bone morphogenetic protein (BMP).” Wilkins and Kelly reported the use of calcium sulfate and bioassayed demineralized bone matrix for bone grafting procedures in sites including the tibia, femur, and humerus. The combination of calcium sulfate and bioassayed demineralized bone matrix (DBM) produced an effective treatment for 25 patients with benign bone lesions, non-unions, and defects from osteomyelitis. Wilkins and Kelly conclude that, “The combination of human-derived growth factors found in bioassayed DBM and CaSO₄ appears to be an extremely effective material with which to graft space-occupying lesions of bone.”
OSTEOINDUCTION, BONE MORPHOGENETIC PROTEINS, AND GROWTH FACTORS

Deminerlized bone matrix is made up of insoluble collagen and proteins that are non-collagenous in nature. Urist isolated bone morphogenetic protein (BMP) and declared it partially responsible for bone cell differentiation and the inductive nature of deminerlized bone matrix. Urist also found that the minerals in bone shield the BMPs from signaling bone induction, therefore the deminerlization process enables the insoluble BMPs to induce bone formation. A range of BMPs signal the cascade of bone formation that takes place at a defect site. The bone matrix proteins signal mesenchymal stem cells to transform into osteoprogenitor cells to produce new bone growth.

Reddi et al. indicate that multiple BMPs have been identified in deminerlized bone matrix, including proteins such as BMP-3 (osteogenin) and BMP-7 (osteogenic protein 1 - OP1). These proteins start the induction cascade of chemotaxis which is “the directed migration of cells in response to a chemical gradient of signals released from insoluble deminerlized bone matrix”. Then fibroblasts proliferate, and cells differentiate. There are a host of growth factors besides BMPs in bone matrix that may play a role in the formation and remodeling of bone. It is not known the exact role growth factors play in bone cell differentiation, but they all may influence proliferation or differentiation of bone cells. Bone matrix growth factors include TGF- (transforming growth factor beta), IGF-II (insulin like growth factors), acidic FGFs (fibroblast growth factors), basic FGFs, PDGFs (platelet derived growth factors), interleukins, granulocyte colony stimulating factors, and granulocyte macrophage colony stimulating factors, along with BMPs.

While proteins in deminerlized bone matrix provide an osteoinductive effect, the collagen structure in deminerlized bone matrix provides an osteoconductive effect. The osteoconductive and osteoinductive properties of DBM are important, but it is its inductive nature that enables regeneration to occur throughout a defect rather than simply at the edges.
The histological results from the canine humeral model with OSTEOSET® 2 DBM pellets show abundant new trabecular bone formation throughout the defects at six weeks. FIGURE 5A shows a site treated with OSTEOSET® 2 DBM pellets filled with new immature woven bone with a small amount of residual calcium sulfate and DBM particles remaining in the defect. Conversely, FIGURE 5B demonstrates the demineralized bone matrix alone treated site where a large number of demineralized bone matrix particles are evident within the defects and new bone formation is found predominately at the margins and haversian surfaces of the matrix particles. OSTEOSET® 2 DBM pellets in FIGURE 5A illustrate the new bony trabeculae incorporating residual calcium sulfate and demineralized bone matrix particles. The trabeculae are thickened and their surfaces show primarily osteoblastic activity. FIGURE 5B represents the demineralized bone matrix alone site where the associated trabeculae are thinner. OSTEOSET® 2 DBM pellets consistently created a more dense and well-developed trabecular network.
RAPID REMODELING

FIGURE 4A illustrates a contact radiograph at 6 weeks for the OSTEOSET® 2 DBM pellets and **FIGURE 4B** depicts demineralized bone matrix alone. **FIGURES 4C** and **FIGURES 4E** illustrate autograft and a non-grafted control defect respectively. **FIGURE 4E** reveals a well developed network of fine and coarse trabeculae interconnecting struts fully occupying the entire defect at 26 weeks.

In the OSTEOSET® 2 DBM graft example **FIGURE 4A** remnants of pellets are slightly visible with new bone evident and significant improvement in organization of trabecular architecture compared with DBM and non-grafted controls. The void filled with demineralized bone matrix alone **FIGURE 4B** appears to be consistently filled with new, immature bone in a more random trabecular formation with radiodensity less than adjacent bone or OSTEOSET® 2 DBM pellet treated defects.
DBM MECHANISM OF ACTION

A description of the events following the mesenchymal stem cell attraction to the bone matrix follows:22,23

- Surface of the demineralized bone particles is lined with mesenchymal cells.
- Chondrogenesis occurs where mesenchymal stem cells transform to chondroblasts (cartilage cells).
- Angiogenesis occurs where new blood vessels are formed. Hypertrophy and mineralization occur in the cartilage.
- Osteoblasts form bone and marrow.
- New bone and demineralized bone particles are incorporated and remodeled.

This process of bone growth associated with demineralized bone matrix is called endochondral ossification in which cartilage forms prior to bone.44,25 Zhang et al.20 report, "In general, implantation of demineralized bone matrix evokes a transient inflammatory phase (day 1), followed by migration and proliferation of mesenchymal progenitor cells (days 2 through 4) which in turn differentiate into chondroblasts (days 5 through 7) and produce cartilage matrix that becomes calcified on days 11 or 12. After the cartilage becomes mineralized, it is invaded by vessels and chondrolysis begins. Eventually, the cartilaginous tissue is replaced by osseous tissue following the appearance of osteoblast-like cells."

TESTING AND SAFETY | TERMINAL STERILIZATION

OSTEOSET® 2 DBM pellets are terminally sterilized by validated electron beam sterilization. E-beam sterilization ensures the biological sterility of the product.

Wright works in partnership with the tissue banks to produce bioassayed human demineralized bone matrix of the highest quality. OSTEOSET® 2 DBM contains demineralized cortical bone powder that is routinely assayed for osteoinductive potential.

EACH LOT OF DBM IS TESTED. This bioassay ensures that demineralized bone matrix released for use and included in Wright products has documented osteoinductive potential.
As with any allograft, there is a risk of disease transmission. Sottosanti has stated, "There has never been a case reported of bacterial or viral transmission resulting from the use of DFDBA. Alcohol washes, acid demineralization, and the freeze-drying process make it impossible for bacteria or viruses to survive..." In addition, a study by Prewett et al. suggests the acid demineralization process inactivates and eliminates HIV. There have been no documented cases of HIV transmission through the use of demineralized freeze-dried bone allograft.

The DBM in Wright products has been validated to provide several logs of reduction for each of the five model viruses evaluated, including enveloped and non-enveloped viruses. This validation was accomplished by Wright’s performance of an extensive testing program to evaluate viral inactivation resulting from the various stages of the tissue processing. Focus was placed on the sterilization process as well as acid and alcohol washes used during the demineralization process. The validation protocol was particularly stringent as it employed analysis of the worst-case conditions for the series of processes potentially affecting and reducing the activity of viruses. The conclusion from the testing was that the overall process was effective in inactivating viruses.

Wright, as well as all of its tissue suppliers, are accredited by the American Association of Tissue Banks (AATB), a non-profit cooperative. Donors are screened rigorously using AATB and FDA standards, which includes thorough donor history, microbiological, and serological testing for diseases such as HIV, Hepatitis B and C. The AATB continuously evaluates improved testing and screening methods for allograft materials. The medical directors review each donor chart twice to ensure the safety and quality of Wright Medical’s products.

EFFICACY

OSTEOSET 2 DBM pellets offer a biological framework into which a patient’s own bone can grow. The pellets are resorbed at a rate consistent with the new bone growth (an average of 4-8 weeks).
The crystalline form of the calcium sulfate material in OSTEOSET® 2 DBM pellets is described as surgical grade alpha-hemihydrate. The surgical grade alpha-hemihydrate calcium sulfate is critical for consistent bone response. The crystalline structure, composition, and particle size distribution resulting from the use of the alpha-hemihydrate are the functional attributes contributing to the controlled resorption and uniform bone response.

The OSTEOSET® 2 pellet manufacturing process creates a uniform crystalline structure of specific size and shape resulting in a controlled resorption rate and sustained release of growth factors to aid in the process of new bone formation.

Non-surgical grade calcium sulfates may resorb too rapidly, preventing creeping substitution of new woven bone. Conversely, slow resorption of non-surgical grade calcium sulfate may inhibit new bone growth. For these reasons, the use of non-surgical forms of calcium sulfate have historically resulted in sporadically successful outcomes.

PRECLINICAL RESULTS

A canine model was used to evaluate OSTEOSET® 2 DBM pellets compared to demineralized bone matrix alone. This model has been used previously to evaluate OSTEOSET® pellets and utilizes a surgically created 13 x 50 mm cylindrical cavity in the proximal humerus. The cavity in one limb was then filled with E-beam sterilized OSTEOSET® 2 DBM pellets (made with canine demineralized bone matrix) and the contralateral limb was filled with aseptically prepared fresh frozen canine demineralized bone matrix. New bone formation was followed radiographically and histologically over a 6 week time period.

The plain film radiograph in Figure 3A shows a well defined cylindrical defect filled with OSTEOSET® 2 DBM pellets immediately after surgery. Figure 3B demonstrates radiographically the same defect with partially resorbed pellets after two weeks. The radiograph indicates increased bone density compared to the immediate post-op radiograph, demonstrating concurrent new bone formation. Figure 3C illustrates the OSTEOSET® 2 DBM pellet defect at six weeks, radiographically indicating that the pellets have been resorbed and replaced by new bone.
REFERENCES